ESA Carbon from Space: Inorganic carbon and air/sea CO> flux session
synthesis

A number of fundamental priorities were identified during the Inorganic carbon and air/sea CO;
fluxes session. A key overarching challenge is to find an optimal way of combining satellites, models
and in situ observations (from ships and autonomous vehicles) to produce best-quality data
products. This is critical if we are to:

i)  measure and monitor the marine inorganic carbon cycle as part of any near real-time
forecasting capability of the biogeochemical ocean carbon cycle; and

ii) apply this information in any regional or global impact assessments to assess the multiple
stressors (e.g. temperature change, ocean acidification) acting upon the marine ecosystem and
subsequent downstream effects on the carbon cycle, natural food web, fisheries, etc.

Another concern common to all observations of the marine carbon cycle is the limited resource
available and how best to use that resource. Current funding levels make it challenging to support
adequate monitoring of core ocean carbon variables in addition to supporting innovative blue skies
science. Increasing overall funding and separating the funding pots for the two activities could help
to maximise monitoring and achieve key priorities for blue skies research.

Below we detail the current capabilities for assessing surface ocean inorganic carbon pools and
fluxes. We then list the gaps that can and should be filled through a list of short-medium term
objectives.

Current capabilities

Particulate inorganic carbon (PIC) remote sensing has focused on the detection of coccolithophores
(Balch et al., 2005; Gordon et al., 2001; Mitchell et al., 2017). Due to their unique optical signature,
coccolithophore blooms have been detected via satellite ocean colour since the launch of the
Coastal Zone Color Scanner in 1978 (Brown & Yoder, 1994; Holligan et al., 1983). The challenge is to
detect coccolithophores and their associated PIC at low concentrations, as well as during bloom
events. Laboratory (Voss et al., 1998; Balch et al., 1999) and field (Balch et al., 1996; Smyth et al.,
2002) observations have informed PIC algorithm development by relating coccolithophore
abundance and morphology to PIC concentrations. Currently NASA Ocean Biology DAAC distributes a
PIC product that merges Balch et al. (2005) and Gordon et al. (2001), and there is also a
developmental PIC product (Mitchell et al., 2017).

Dissolved inorganic carbon (DIC) and other carbonate system parameters (e.g., total alkalinity, TA,
partial pressure of CO; in seawater, pCO,) are more challenging to determine from satellite
observations as they don’t have a coloured component and are controlled by both physical and
biological processes. This has led to the development of regional relationships to predict DIC or TA
from salinity (e.g., Cai et al., 2010; Lefévre et al., 2010) and temperature (Lee et al., 2006), as well as
global relationships using a suite of physical and chemical parameters (e.g., Sasse et al., 2013). More
recently, efforts to combine physical and optical satellite ocean observations with climatological and
re-analysis data products has opened the door to remote estimation of the marine carbonate system
via regional and global relationships as well as new machine learning methods (e.g., Gregor &
Gruber, 2021; Land et al., 2019). Furthermore, modelling studies have been used to evaluate the
drivers of the marine carbonate system (Lauderdale et al., 2016) and examine potential impacts of
extreme, compound events (Salisbury & Jonsson, 2018; Gruber et al., 2021).



The flux of CO; between ocean and atmosphere can be described using a simple equation first
described by Liss and Slater (1974): Flux=KACO;; where K is the gas transfer velocity (equivalent to
the inverse of the resistance to gas transfer) and ACO; is the difference between the CO,
concentrations in the atmosphere and ocean. Ocean temperature influences the partial pressure of
CO; in seawater and is thus an important determinant of the ACO.. K has typically been
parameterised as a function of wind speed (e.g. Wanninkhof et al., 2014).

Large scale air/sea flux estimates typically make use of the global seawater pCO, database (SOCAT;
Bakker et al., 2016) and/or global climatologies of surface seawater pCO, using data
interpolation/extrapolation and neural network techniques (e.g. Landschutzer et al., 2020; Takahashi
et al., 2009). Climatological seawater pCO; fields can be coupled with satellite retrievals of SST, wind
speed, etc. to calculate the air-sea CO; flux (as demonstrated with the FluxEngine: Shutler et al.,
2016). Satellite observations have also been combined with model output to estimate pCO; and air-
sea flux (e.g. Arrigo et al., 2010). Estimates of pCO; and air-sea flux have been achieved solely from
satellite observations (e.g. Ono et al., 2004; Borges et al., 2009; Lohrenz et al., 2018). It is also
possible to calculate seawater pCO; from observations of TA and DIC and using a version of pCO2sys
(e.g. Humphreys et al., 2022).

Seawater pCO; and air-sea CO; fluxes can also be estimated using models such as ECCO-Darwin
(Carroll et al., 2020), which are initialised with a suite of physical variables, biogeochemical
properties and also TA, DIC and pCO, from datasets such as SOCAT and GLODAP. The advantage of
the ECCO-Darwin model is that it assimilates a combination of physical and biogeochemical data in
order to produce physically-conserved properties. As such models continue to evolve, it will be
increasing possible to use them to assess regional and global scale carbon inventories as well as
fluxes.

Gaps and objectives

The gaps in our current capacity for the detection of inorganic carbon and the air-sea flux of CO;
from space fall into two broad categories: gaps relevant to observing any aspect of the aquatic
carbon system (system-wide gaps), and gaps relevant to inorganic carbon and flux products
(product-specific gaps).

System-wide gaps:

1. For all components of the inorganic carbon cycle and carbonate system, we lack a measure of
the pixel-by-pixel uncertainty on the satellite products.

2. We need greater spatial and temporal coverage of field observations for rigorous development
and validation of methods (especially using data-rich, machine learning approaches), including
water column observations.

3. Closer collaboration between data generators and modellers is required to improve data
assimilation directly into Earth System Models.

4. Ultimately, top-down (e.g., machine learning) and bottom-up (e.g., theoretical understanding of
the system) approaches need to be combined to improve satellite products.

Product-specific gaps:

1. Current PIC satellite products are global and are not accurate in environments where other
highly scattering materials are present (e.g., coastal shelf seas). There is a lack of coincident in



situ observations of PIC and other highly scattering materials, along with full spectral
measurements of specific inherent optical properties for PIC.

2. Sustained, long-term monitoring of seawater pCO; and fluxes in key ocean regions (e.g. North
Atlantic) is essential, yet there is currently no dedicated framework in place to
provide/guarantee these data.

3. Current air-sea CO; flux climatologies are spatially and temporally limited by the extent and
number of observations. Climatologies are also hampered by how best to extrapolate
observations to different SST (both horizontally and to the air-sea interface).

4. Quality assurance of observations. TA/DIC observations require a certified reference material
(CRM) and the future availability of this is limited/threatened. Direct air-sea CO, flux
observations require community-wide agreement on best practice approaches in order to
establish a fiducial reference method (FRM) for validation of satellite estimates.

5. Improved process understanding of K needs to focus on understanding relevant and uncertain
processes. For example, there is still uncertainty surrounding near surface temperature
gradients (see Woolf et al., 2016) and the role of wave breaking, bubbles and turbulence (see
Bell et al., 2017; Blomquist et al., 2017).

6. Carbon dynamics and air/sea CO; fluxes in mixed sea ice regions are poorly understood (see
Watts et al., 2022), which is a major gap in understanding given that climate at the poles is
changing rapidly, affecting sea ice melt/freeze processes and timings.

Short/medium-term objectives

> Increase the amount of data from a range of sources (model output, satellite, ships, autonomous
platforms) and link them across disciplines (biogeochemical, physical, optical, biological) to
produce best quality data products.

» Refine which satellite, model and in situ reanalysis data products to provide accurate, high
resolution pCO,, DIC and TA estimations on local, regional and global scales.

» Reconcile model carbon budgets with both satellite and in situ observations by constraining the
different terms within the budget.

> Exploit novel technologies to improve understanding of standing stocks and fluxes in a range of
environments (e.g. low winds, high winds, marginal ice zones). For example, gas transfer
estimates need to be improved, potentially by exploiting measures other than wind speed (e.g.
sea state or sea surface roughness using backscattering observations, see Goddijn-Murphy et al.,
2013).

> Generate robust, community-accepted processes and materials to satisfy the necessary CRM and
FRM requirements.
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